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Relations are established between nonsteady temperature fields and their limit- 
ing states, steady fields, for linear and some nonlinear boundary problems. 

I. Linear Case 

Suppose that it is required to  determine U(M, t), satisfying the condition 

0U 
Ut=aiAU; MCD, t > O ,  U(M, O)=q~(M), o~-~n + U = O ,  MEG, (i) 

where a and a are constants; ~(M), a known function; D, an n-dimensional region with boundary 
G. The solution of this problem is written in the form 

U(M, 0 =- ~ cJ,~exp(--aZL#), c. = [[V~H-zJ ~ ~(P) V~(P) da, (2) 
n = l  D 

where ~n are eigenvalues; V n are the eigenfunetions of the corresponding Sturm-Liouville 
problem 

As is known, Eq, 

0F AV~-XV=O, MED, =-~n +V=O, MCG. (3) 

(2) is a series converging uniformly in t. Term-by-term integration gives 

0 n = l  0 

Calculating the integral on the right-hand side and passing to the limit as t + -, it is found 
that 

t 

F(M)_--Hm S L f(j~, T)dT= E c~Vn 
t ~ ~ ~ ~ a z ( 4 ) 

0 n = l  

Using Eq. (3), it is found that F(M) satisfies the following conditions 

aZAF (3/i) = - -  q~ (M), M E D, 

OF (M) (5) 
---[-F(M)=O, MEG. 

On 
Thus,  t he  l i m i t i n g  r e l a t i o n  b e t w e e n  t h e  s o l u t i o n  o f  t h e  h e a t - c o n d u c t i o n  e q u a t i o n  (4) and t h e  
solution of Poisson's equation (5) is obtained. 

Now suppose that it is required to determine U(M, t) 

Ut=aiAU+[(M, t), MCD, t>O, U(M, 0)= O, 
au (6) 

sr -- - { -U =O ,  MeG. 
OrL 

The solution of Eq. (6) takes the form 

t 

U(M, t) =~ V~(M)[,~(T*) ~ exp (-- aZh~ (t -- T)) dx, x'E[0, t], 
n = l  0 

*Deceased. 
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where 

f~ (0 : IIVJ1-2 .f f (p' 0 V~ (P) d~, 
D 

/ (M, t) = ~ A (0 v. (M). 

If t § ~, then 

and hence 

aZAF = ~ .  1 
aZ)~n 

F (M) - -  lira U (M, t) = 

i 

Ia2AlqL~ (~)1 = E 

I ~.~ V,, (M) f~ (oo) a~Z----- ~ 

[ -  z ~ v , A  (oo)] = - L, (oo) v .  (M) = - 

n=l 

Thus, the limiting steady field is described by the conditions 

0F a~AF(M)=--~(M), MEO, =--+F=0, M6G 
0n 

Note that, if f(M, t) 

fn (')" 

(7) 

lim [(M, t ) = - - ~ ( M ) .  

(8) 

in Eq. (6) is independent of t, i.e., f = f(M), then fn(t) = const = 

II. Nonlinear Case 

Next, the relation between nonsteady and steady fields is investigated in the case when 
the thermal conductivity depends on the temperature. It is assumed that the small parameter 
e appears in the equation. Let 

U t=div[~(eU) gradUl@f(M, t), U(M, O)=~OPO,. M6D,  

ou  (9) 
a + U : O ,  M6G. 

On 

The s o l u t i o n  of  t h i s  problem i s  found in  t he  form of  a power s e r i e s  in  e [1, 2] 

U(M, t) = U0(M, t)-k eU~(M, t) + . : .  + ekUk(M, t) q- . . .  

under the condition that it converges. The functions Uk(M , t) are solutions of the following 
problems 

OUo OU. 
--X(O) AU0§ O, Uo(M, 0) ---- w (M), a--~-n + U . : - 0 ;  

Ot 
�9 . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  ( l O )  

ouk = ~ (o) AUh + f~ (M, t, Uo . . . .  uk_,), 
Ot 

OUh (ll) 
U~(M, 0)=0,  a + U h = O ,  

On 

The solution of the problem in Eq. (I0) is sought in the form of a sum of two functions Uo = 
P + Q, satisfying the conditions 

In view of Eqs. (7) 

Pt = ~ (0) AP +[o, 

P(M, o) = o, 

OP 
o~---]-P=O, 

Qt ~ ~ (0) AQ i M ( D, 
Q (m, 0)= ~ (M),[ 

and (8), lim. P(Mi t)=Fo(M) ,.and 

(12) 

OFo 
(0) A F o = - - [ o ,  MCD, a On--SF~ M6G. 

90 



Taking Eqs. (4) and ( 5 )  into account yields 

and 

N o t e  t h a t  Q ( M ,  t ) - + O  . 
relation ~'~ 

t 

lira ,f Q(M, "c) d~c 
0 

= ~(M), 

k (0) A ~  = - -  q~ (M), 
04 

c , - - -  + q ) =  0. 
Ou 

In view of Eqs. (7) and (8), the solution of Eq. (ii) satisfies the 

l im Ut~ (M, t) = F h (M), 
t ~  

while the function gk(M) is a solution of the problem 

OFh 
;~.(0) A F k ( M )  -~ - - T h ( M )  = lira [h, c~ - -  + F~, = 0, MEG. 

t ~  0/7. 

Thus, the following conclusions may be derived: 

a) as t + ,0 the solution U(M, t) of Eq. (9) tends to some function 

W 
h = l  k = 0  

where Fk(M) is a solution of problems of the form in Eqs. (10) and (ii); 

b) the function W(M) satisfies the conditions 

ow (13) 
d i v [ ~ ( ~ W )  g r a d W l = - - ~ ( M ) ,  M C D ,  ~ - - + W = O ,  M E G ,  

On 
w h e r e  ~(M)= l im [ ( M , t ) .  

c) in those cases where it is necessary to know the thermal state of the body at suf- 
ficiently high t, the simpler boundary problem in Eq. (13) may be solved instead of Eq. (9). 

As an example, consider the problem 

V t - - - - t { l + 4 8 ( 1 + V )  a } v ~ ] ~ + f ( x ,  t), V(x, 0 ) = 0 ,  

V.(O, 0 = 0 ,  V~(1, t ) = 2 [ 1 - - e x p ( - - ~ O ] .  
Here 

f (x, t) = ~zxZ exp ( - -  czt) - -  2 [1 - -  exp ( - -  czt)l - -  8 [1 - -  exp ( - -  at)]  {1 + x 2 •  

• [1 - -  exp ( - -  ~zt)]} 2 {1 + 7x 2 [1 - -  exp ( - -  czt)]} ~. 

It is found that 

ix) ---- l im [ (x, t) = - -  2 - -  8e (1 + x2)2(1 + 7x2). 

The equation of the steady state is written as follows 

[{1 + 4 8 ( 1  + W )  3} W.~I.~ = 2 +  8~ (1 + x2)2(1 + 7x2), 

w ~ ( o )  = o, w ~ ( 1 )  = 2. 

The problem in gq. (14) has a unique positive solution W = x a. 
of the accurate solution of the problem 

V(x ,  0 = x~ [i - exp ( -  c~t)] 
and the function W(x) that 

(14) 

It is clear from a comparison 

W(x) = lira V(x, t). 
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REGULARIZATION OF INVERSE PROBLEMS BY THE SCHEME OF PARTIAL 

MATCHING WITH ELEMENTS OF A SET OF OBSERVATIONS 

M. R. Romanovskii UDC 536.2:517.946 

The problem of determining the thermophysical properties by means of a discrete 
set of observations on the temperatures of the test object given with measure- 
ment errors is examined. 

The investigation of complex processes by using inverse problems has attracted consider- 
able attention lately. Their solution is associated with certain singularities, particularly 
the influence of errors in the initial data on the desired solution. As is known from [i], 
in such cases it is necessary to limit the domain of the allowable solutions and to match the 
measurement errors. Since a number of stabilizing functionals with the same problem can be 
set in correspondence and different norms for the deviation from the quantities observed can 
be selected, then it is interesting to determine those among them which will permit, for suf- 
ficiently general assumptions about the desired quantities, obtaining the most exact solu- 
tions under conditions of unimprovable observations for a broad range of measurement errors. 
In addition, the question of selecting the method of matching the observations occurs in the 
solution of applied ill-posed problems. One condition that establishes a relation between the 
accuracy of the solution and the measurement error [2] is used in the widespread problem, in 
practice, of restoring the thermal flux. This condition expresses the total error in all 
observations for measurements executed at several points. However, one condition can turn out 
to be inadequate to determine several parameters of a model that is characteristic for the in- 
verse coefficient problems, while taking total account of the errors results in a loss in 
accuracy of the solution of the inverse problem [3]. This paper is devoted to investigating 
the properties of the regularized solution of an inverse coefficient problem for the nonlinear 
heat-conduction equation as a function of the degree of limitation of the domain of admissible 
solutions, the form of the observation error estimate, and the methods of matching them. 

In the domain Q = {~, t):O < x < i, 0 < t < T} we examine the one-dimensional heat- 
conduction equation 

a~ O~ - ox a~ -~x + I (x, 0 (1) 

for which the initial and boundary conditions assuring uniqueness and stability in the deter- 
mination of the function u(x, t) for given values of the specific heat a~(u) and the heat 
conductivity an(U) and any T > 0 are assumed known. 

Let us also assume that at m points of space, and for each of n times of the domain Q 
observation results are given 

u~l=u(x,, t~)+efy, i =  1, m, ] =  1, n, (2) 

with a known magnitude of the deviation norm 

62=j  - (l~y-- uij)", i = i, ~, 
i=I 

(3) 
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